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DIFFERENTIAL INCLUSION WITH DISCRETE DELAY
AND INTEGRAL CONDITIONS
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ABSTRACT. This study investigates non-linear fractional integro-differe-
ntial inclusions, including discrete delay terms governed by integral con-
ditions. The primary aim is to implement solution’s existence for both
convex as well as non-convex cases, which are crucial in many math-
ematical and physical models. The subsistence of at least one result
is established by the use of Leray-Schauder fixed point theorem. Both
convex and non-convex scenarios are carefully explored due to its im-
pact in areas like control theory along with dynamic systems. Moreover,
the topological structure of the problem is not just examined, but thor-
oughly scrutinized to validate the practical relevance of the solutions.
This topological examination is key to understanding the complex be-
haviour of solutions in systems characterized by non-linearities and de-
lays, providing a solid foundation for our findings. Overall, the study
provides valuable theoretical insights that contribute to a more profound
comprehension of fractional differential inclusions and its potential ap-
plications in real-world scenarios.
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1. BACKGROUND

Fractional order differential equations become a critical tool in modelling
complex real world phenomena across various domains of science and engi-
neering. These equations, characterized by non-integer order derivatives, ex-
tend classical differential equations, offering advanced modelling techniques
for systems in areas such as viscoelasticity [25], electro-chemistry [10], con-
trol systems [13], porous media [8], and electromagnetism [12] . The distinc-
tive ability of fractional derivatives to capture memory effects and hereditary
properties makes them highly valuable for modelling systems where tradi-
tional methods fall short.

Over the years, fractional calculus has driven substantial progress in the
field of both ordinary differential equations as well as partial differential
equations, particularly with the help of Caputo and Riemann-Liouville frac-
tional derivatives [2]. Foundational work by Kilbas et al. [18]-[17], Miller
and Ross [21], and later studies by Agarwal et al.[3], Benchohra et al. [4],
and Benchohra and Hamani [5], have made important contribution in un-
derstanding the solution’s existence and uniqueness for fractional differential
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equations [6]-[11]. Research such as has further extended these concepts by
investigating initial value condition combined with various fractional-order
functional differential equations added with the infinite delays [20]-[27].

Despite these advancements, a significant research gap remains regarding
boundary value issues involving fractional differential inclusions combined
with integral boundary conditions [9]-[23]. Most existing research has cen-
tred on classical boundary conditions or relatively simple cases, while more
complex situations, such as multi-point or non-local boundary conditions,
have received less attention. These types of problems are crucial in real-
world applications, including community dynamics [19] and biological sys-
tems [30], where memory and delayed responses [32] play a significant role.
The exploration of these problems, particularly in non-convex settings, re-
mains underdeveloped in the literature [7]-[31].

Addressing this gap, the present study aims to explore boundary value
issues combines fractional differential together with inclusions that involve
discrete delay terms and integral boundary conditions. Specifically, we ex-
amine solution’s existence for convex as well as non-convex cases, contribut-
ing to a deeper theoretical understanding of these issues. Based on the above
information our proposed model is formulated as:

CD5h(t) cH (t At), it — £), A°(1)) 6 € (1,2],t € = [0, 9]
(1.1) 1(0) fo . (s, h)ds
A()) + ﬁ' fo (s, h)ds,

within this context, ¢D? represents a type of fractional derivative called the
Caputo derivative, while H denotes a set-valued operation that maps jx B x
B x B to p(B), where B represents the real number. The collection of all non-
empty subclasses of B. The terms k and % are defined as continuous functions
on j X B, also A(t — k) deals with the delay term and & represents discrete

delay. Additionally, the integro term A® = fo w,s)ﬁ )ds is integral to
the system’s dynamics.

By examining both convex and non-convex cases, this study fills an im-
portant gap in the literature, offering new theoretical insights into fractional
differential inclusions conjunction with integral boundary conditions. Addi-
tionally, it emphasizes their practical applications in areas involving delayed
and memory-dependent processes.

This paper is structured into several sections, each contributing to the
exploration of our research area.

e Section 2 introduces the initial findings necessary for the subsequent
sections.

Section 3 presents a few existence results.

Section 4 provides two results for non-convex valued right-hand sides.
Section 5 discusses about the topological framework of the explana-
tion set.

e Section 6 presents a pattern to clarify the discussed concepts.

These results expand upon findings from the previously cited literature to
encompass the multivalued case, representing a novel improvement to this
imminent area of inquiry.
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2. PREPARATORIES

This section introduces some basic notions and mathematical structures,
along with the relevant symbols that are used for the analysis outlined in
the current manuscript. Consider A(y, B) is basically the Banach space of
all criteria from jy to B, equipped to the norm:

[7illoe = sup{|A(t)] : 0 < t <4}
Next, Assume £!(7, B) represent the complete norm linear space consisting
Lebesgue integrable mappings A : 3 — B, with respect to the norm defined
as: _
e = J3 1)l de.
Similarly, £7°(y, B) denotes the normed liner space consisting of all specifi-
cally bounded mappings h : 7 — B, in additional to the norm:
|72l coe = inf{l > 0 : |a(t)| <,V t € 3}

Furthermore, AC'(j,B) refers to the dimensions of absolutely continuous
operation i : 3 — B, where their derivative %' is also continuous. Let
(X, |l - D) be a complete norm space, and contemplate the following features:

o —0y={hebN):his closed}

e —0,={he€f(N):his bounded}

o —f ={he€6X):his compact}

o —bopc={heO):hiscompact and convex}.

A set-valued operator @ : R — 0(R) is identified as convex regions if w(h) is
convex to every i € N. The operator w remains limited on finite subsets if
for any B € 0,(R), the set w(B) = Upepw(h) is bounded in R, that signifies:

suppep{sup{|u| : u € w(h)}} < co.
The operator w is referred as upper semi-continuous on X if for any given
ho € N,w (hy) is a compact subset of R, and unbounded subset & in R
including @ (), there is an open neighbourhood &g of Ky in such a way
that @ (@) C @.

Additionally, w is classified as completely continuous if for every B €
0p(R), ww(B) is relatively compact. Furthermore, w is upper semi-continuous
under the condition that w possesses a closed graph, meaning:

hy, — B* h, € w (h,) = h* € w (h*).
If @ is fully continuous with non-empty bounded and closed sets, ensuring
the existence of a fixed point, means there is A € N in such a way that
h € w(h). The collection of solutions that remain unchanged under the
multivalued mapping w is signified by Fix(w).

A set valued mapping w : J — 64(B) is implied for measurablility to
entire h € B, the operator:

o l(h)={zxe€g|hew(x)}
is measurable.

Definition 2.1. [24] A set valued mapping H : 3xB — 6(B) is Carathéodory
if

o t— H(t,u) is measurable to all u € B,

e u — H(t,u) is upper semi-continuous to every t € ;.

In this context:
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e Measurability of t — H(t, ) means that for every fixed u, the func-
tion H(t,u) behaves in a way compatible with the underlying mea-
sure space.

e Upper semi-continuity of u — H(t,u) means that for almost every
t, the map is continuous in u from above, meaning the values do not
jump upwards abruptly.

For every h € A(y, B), the cluster of selection is defined by

Sy = {ve L(y,B):v(t) € H (t,At), it — k), (1)) ,Vt € 5}
Suppose (X, d) express a metric space along with the norm (X,]|-]). Assume
the metric Hyq : p(R) X p(R) = R4 U {oo}, defined as:

Hq(R,G) = max {suppeR d(p, G),supyeq d(R, q)} ,

at which d(R, q) = infpep d(p, q) and d(p, G) = infpeg d(p, ¢). Then, (04, Ha)
is a metric space, and (0., Hq) is a universal metric space [17].
Definition 2.2. [23] A set-valued map & : X — §; referred to as:

e ~-Lipschitz if there is v > 0 with characteristic,

Ha(2(t), D(h)) < ~d(t,h), Vt,heXN.

e A mapping is called a contraction if it contains 7-Lipschitz with

condition vy < 1.

Definition 2.3. [27] For a given a function & € L' ([p, ¢], R, of fractional
order § € B, is explained by'
1‘5 f(t—s‘;l()ds
in which, the term T is the gamma operator If p = 0, this is expressed as
IPR(t) = (t) * p5(t), where p5(t) = $57 for t > 0, and p5(t) = 0 for t <0,

Definition 2.4. [27] The RL fractional §-th order derivative for a function
R € [p, q] is explained by:
(D3 %) () = gy e S (6 — )"~ i(s)ds
where n = [0] + 1 and [d] represents the integral part of ¢.

Definition 2.5. [27] For given a function & € [p, q], the Caputo fractional
oth order derivative is represented by:

(CD§+/?;) (t) = F(n 3) f (t—s)" 1R (s)ds
at which n =[] + 1.

3. THE CoONVEX CASE

This section discusses the solution’s existence on the behalf of the perime-
ter constraint problem (1.1) under the assumption that the the values on
the right-hand side are convex. Our hypothesis begins by assuming that F'
is a compact map whose values are convex sets.

Proposition 3.1. [84] An operation h € AC'(,B) is referred to satisfies
the result of (1.1) if we have an operation v € L(3,B) in such a such way:
o(t) € F (t,A(t), A(t — k), 7% (t)), Vtey

and:
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°DOA(t) =w(t), 1<d<2, tey
at which the operator h fulfils the associated boundary conditions in (1.1).
Lemma 3.2. [34] Given § > 0, the associated solution for the system:
°DIR(t) = 0
s presented as:
R(t) =1lo+lit+ 1ot + -+ lpgt™ L,
at which l; € B,i=0,1,2,...,n—1, and n = [§] + 1.
Lemma 3.3. [34] For 6 > 0, we have:
PUDOR(t) = R&(t) + lo + Lt + lot? 4+ -+ + gt L,
where l; €B,i=0,1,2,...,n—1, and n = [§] + 1.

Lemma 3.4. Assume 1 < 6 < 2, along with o, p1, p2 : 3 — B are continuous.
A mapping h is a result for the following integral equation:

P
(3.1) ) = P+ [ @t s)o(s)ds
0
under which
32  pr=Yri-t /1"’ (s)ds + UH 1L /¢ (o)
. 1/) +2 Jo P 1/) +2Jo P2
and
(t=5)C"D  (4)(E=s)0"D  (14)(h=s)0~2)
(33) w(ts)=4 ) (4+2T(5) Wrare-n 0 0Ssst
’ ’ C(140)(=s)  (14t)(dh—s)(5-2) t<s <y
(¥+2)T'(5) (+2)re-1) <

The function h is valid for this equation only if it satisfies the fractional
expression given by

(3.4) °DOh(t) =o(t), tey

together with boundary conditions:

¥
(3.5) 1(0) — #(0) = / p1(s)ds,
0
g
(3.6) B + H () = /0 pa(s)ds.
Proof. Suppose h satisfies equation (3.4). From Lemma (3.3), it is provided
as:
L [f g6
3.7 ﬁt:—/ t—95)Y"Vo(s)ds + lp + It
3.7) (t) o) Jy (t—s) (s)
Differentiating, we get
= L / “l y6-2)
(3.8) H(t) = o= J, (t—s) o(s)ds+ U1

Substituting into equations (3.5) and (3.6), we get

P
(3.9) lo— 11 :/0 p1(s)ds
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and:

. 1 t
lo+0L(W+1)+=— [ (t—5)0Yo(s)ds
(3.10) re) /0

t &
+ ﬁ/{) (t—5) 0o (s)ds :/0 p2(s)ds

Solving these equations gives the values of [y and ;. Substituting them into
equation (3.7), we get the required value for A(t). On the other hand, if &
solves the equation (3.1), also it satisfies (3.4)-(3.6). O

Theorem 3.5. [3] Our hypothesis is derived from the non-linear alternative
of the multivalued maps from the Leray-Schauder type. Suppose the upcom-
g assumptions hold:

(A1): H ) x RXRXR = 0,p.o(B) behaves as a Carathéodory multivalued
mapping.

(A2): Thereisp € L (3,BT) combined with continuity and non-decreasing
mapping 1 : [0, 00) —= (0,00) in a way :

[H(t, u)llp = sup{[v] : v € H(t,u)} < p(t)P(lul), VtejueB
(A3): This notation ¢,, € L' (3,BT) along with a continuous, non-decreasing
mapping ¥* : [0,00) — (0,00) in a way:

st w)l| < dr(t)y*(Ju]), VtejueB
(A4): There is ¢ € L' (3,BT) along a continuous, non-decreasing mapping
¥ :[0,00) = (0,00) in a way:

[E(t )l < ¢r(t)¢(lul), VtejueB
(AS5): There isl € L (3,BT) in a way:

Ha(H(t,u), H(t,a)) <I(t)|u—al, Vu,ueR
and:
d(0,H(t,0)) <I(t), Vtey

(A6): There is a constant p > 0 in such a way:

(3.11) . » ;
ap*(p) + b(p) + coy(p)

>1

where:
1 1
a= % f0¢ dr(s)ds, b= % f:j dz(s)ds, c=0|
Then the system (1.1) has at least one solution on j.

Proof. Our aim is to reformulate system (1.1) to a fixed-point issue by defin-
ing a set valued map given by the following equation

¥
(3.12) N(h) = {K € C(3,B) : k(t) = Pi(t) —|—/ w(t, s)v(s)ds,v € S’H’ﬁ}
0
along with the term

b1t [t ) +1 [

(313) Py = Lt / (s, Bi(s))ds + L1 / R(s, hi(s))ds
v+2 Jo Y+2Jo

and the term w(t, s) is already expressed in equation (3.3) and with the help

of Lemma (3.4), we can say that the fixed points of @ are outcomes to (1.1).
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The proof proceeds through numerous stages:
Step 1. To demonstrate that @ (%) to be convex for every single i € A(y, B).
Assume that &1, k2 € @(h), and suppose there is v, v € Sy 5 in such a way
that to all t € y,

Ri(t) = Pu(t) + [} w(t, s)vi(s)ds, i=1,2

For any 0 < d < 1, define:

(dR1 + (1 — d)R2) (t) = Pa(t +Ltﬂtﬁww(%+ﬂdeﬂ@MS

Moreover, Sy 1 is convex, we conclude that d&y + (1 — d)Re € @(h).

Step 2. Suppose By = {h € A(3,B) : [|A|loc < 7"} be enclosed within
limits in C(y, B), and suppose that i € By, then to every f € @(h) and
t € 7, using conditions (A2) — (A4), we obtain,

d+1 [ Y +1 _
o) <2 [ et <>>|ds+¢+2/0 (5, (5))ds

)
+/0 (¢, $)[o(s)|ds

1ﬁ+1 Yp+1
<o ¥ Ul / buls) ds+ 0 (Ihl) / dx(s)d
3 () ol e
Thus
1RO < 25207 (07%) [ dnls)ds+ 220 () Ji Sw(s)ds -+ (7) lpll e := 1

Step 3. For t1,ty € y with t; < tg, and i € B+, estimate:

_ W — ¥
()~ )] <25 [ e s + B2 [, sl

P
" / @ (t2, 5) — @ (t1, )| [u(5)|ds

)/ oayds + 4 /m

L (n >|\p|\m/0| @ (ts,5) — w (11, 5)| ds

the right-hand approaches to zero as t; — to. Hence, as a consequence of
the Arzela-Ascoli theorem, & is completely continuous.

Step 4. Suppose h, — hy, Ry € @ (hy), along with &, — R.. our aim is
to establish &y in @ (). Since R, € @ (hy,), there exist v, € Sy p, in a way
so that for every t €

Fn(t) = Py, (t) + fo w(t, s)vp(s)ds
We need to demonstrate that there is v, € S5, with

R«(t) = Py, (t +f0 w(t, s)v«(s)ds
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Duo to the fact that H(t,-) is upper semi-continuous and to all € > 0, there
is ng(e) > 0 in a way that to each instance of n > ng :

vn(t) € H (L, hn(t)) C H (L, hie(t)) +€B(0,1), Vtey

Duo to the fact that H has bounded as well as closed values, there is a
subsequence vy, in such away that v, — v.. Hence, vi(t) € H (t, fis(t))
for every t € 3, and we can show:

|, (1) — R (t)] > 0,  as  m — oo

Step 5. Assume that & provide a solution for the given problem (1.1) and
there is v € Sy 5 in such a way that for every t € 5

) Zi;/ 6u()5 (1(5) ) ds +¢“/ 6x(5)D(s) s

¥ .
T /O w(t, $)p(s)d(h(s) ) ds

1/;+1 0 )
<T ¥ Ul [ o i+ 201 [ ontoas
+ 9 ([l @] e

Thus,

Alloo
aip* ([|lloo ) +0v (1 Alloo ) +c@ib (|| fill o) —

Hence, a constant can be found p under the condition that ||Allee < @.
Suppose

U={heA(3,B):|hlle <p}.

Since, mapping @ : U — 6(A(3, B)) is both completely as well as upper semi-
continuous. Since no element i € QU satisfies the condition & = A@(h) for
some A € (0,1), the non-linear alternative of the Leray-Schauder type states
to a fixed point in 4 for U, which solves the problem stated in (1.1). O

4. THE NON CONVEX CASE

This section of the paper discusses the existence of solutions for equa-
tion (1.1) in circumstances where the right-hand side is not convex. The
fixed-point theorem is what the first result relies on, concerning contraction
multivalued mappings as introduced by Covits and Nadler [7]. The second
result relies on Bressan and Colombo’s selection theorem [24], which ad-
dresses lower semi-continuous operators with reducible parts, together with
the non-linear Leray-Schauder alternative. The transition to non-convex
scenarios introduces challenges such as the lack of compactness, discontinu-
ities in selections, and difficulty ensuring measurability and boundedness of
mappings. To address these, assumptions (A7), (A8), and (A9) impose Lip-
schitz continuity and boundedness conditions, preparing the groundwork
for applying Bressan and Colombo’s theorem. This theorem enables the
construction of measurable selections from multivalued mappings, ensuring
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the reducibility of the operator and facilitating the use of fixed-point argu-
ments. Furthermore, it establishes the critical link between weak and strong
convergence in £}, which is essential for proving the existence of solutions
in non-convex settings. By overcoming the complexities of non-convexity,
this approach ensures the analytical consistency required for the validity of
theorem (4.1).

Theorem 4.1. Consider the condition (A5) with subsequent hypotheses are
satisfied:
(A7) A constant k* that is greater than zero exists, to ensure that

|(t,u) — k(t, @) < k*|u—1a| to all values of t € 7 with u,u € B
(A8) A constant ™ that is greater than zero exists, to ensure that

|R(t,u) — R(t,u)| < k**|u—a| to all values of t € j and u,u € R
(A9) The multivalued map H : 3 x B — 0,,(B) fulfils the attributes that
H(-,u) 1 3= 0p(B) is measurable and integrably bounded to all instances of
u € B, provided that

(ORI U VS
P+2 P +2

at which = ||l]|ze, then equation (1.1) contains one or more results on j.

<1

(4.1)

Proof. Our aim is to demonstrate that for the given operator @ given in
equation (3.12), the hypotheses of lemma (2.3) are satisfied. We will divide
the analysis into two part.

Part 1: As @(h) € 04(A(y,B)) for all h € A(y,B) and suppose (Fn),>¢ €
@(h) in such a way that &, — & € A(3,B). Then there is v, € Sy s in such
a way that, to all t € y,

Fn(t) = Pu(t) + fgzjw(t, s)vp(s)ds.

From (A5) and the boundedness of the values of H, we may select a subse-
quence if required, and deduce that v, converges weakly to v in £L (7, B), a
space whose topology is weak. By employing standard techniques for proving
weak convergence implies strong convergence, It can be demonstrated that
vy, converges strongly to v, with this we conclude that v € Sy ;. Therefore,
to every t € 3,

() = (t) = Po(t) + [V w(t, s)o(s)ds,

thus & € N(h).
Part 2: Consider that for v < 1 in a way that

Ha(@(h), 2(h)) <A|h— Rl for all h h € A(y,B)

Assume 5, i € A(7,B) and &y € @(h). Then there is v1(t) € H(t, A(t)) in
such a way that, for every t € 3,

Ri(t) = Po(t) + [V w(t, s)oy (s)ds
Using (A5), this implies that
Ha(H(t, h(t)), H(t, A(t))) < 1(t)[A(t) — A(t)]
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Therefore, there is w € H(t, A(t)) in such a way that
lv1(t) —w| < UYIAE) —A(t)], tey
Define a mapping U : 3 — 6(B) b,
t) = {A e B:|v(t) —w| <I(t)|At) — At)|}

In view of the fact the set valued map V (t) = U(t)NH(t, A(t)) is measurable,
there is an operation va(t), a measurable selection for V', in such a way that
va(t) € H(t, h(t)) with

[o1(t) —v2(t)] < U(B)[A(L) — A(Y)], tey
Considering each t € 3, define
Ra(t) = +f0 w(t, s)va(s)ds
in this case

Py(t) 1/11;:2" fo s, hi(s))ds + :/;E Jo 7(s,h(s))ds

Now, given t € 3,
|F1(t) — Ra(t)] S% /Ot (s, 1)) — K(s, h(s))|ds

v+l
P+ 2

R(s,h(s)) — R(s), ﬁ(s)) | ds

b
7 - d
* /0 (69 (1)~ o) s
CICRE T NI Cl b J P T
b+ 2 b1 2
+@/€||h—ﬁ||oo

<

Thus,

B R (¥+1) DA+ = _F
71 — Fallog < [ 4 B oo ) s — B,

Through a similar reasoning by swapping the position of # and A, it can be
concluded that

HA@@L@@»_[“ﬁgm +w$j%aﬂ+@4nh—mh

Thus, to begin with, due to condition (4.1), @ is a contraction mapping, and
by Lemma (2.3), it contains a fixed point A, which is one of the solutions to
equation (1.1). Hence, that concludes the proof. O

Next, we show the solution for equation (1.1), motivated by the non-linear
alternative of the Leray-Schauder kind in association with unique-valued
mappings.

Definition 4.2. [25] Suppose A is a metric space with a countable dense
subset (separable) and @ : h — 6 ([,1([0,1&}, 8?)) is a set valued map. We
can say that @ contains certain properties if:
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e & exhibits lower semi-continuity;
e J has non-empty, closed, and decomposable sets as values.

Suppose that H : [0,9] x R — 6(B) is a set valued mapping with non-empty
bounded as well as closed values assigned to H, the multi- function mapping

H s A([0,4],B) = 0 (£1(0,7],B)), is given by

H(h) = {w e (ﬁl([o,u}], B)) L w(t) € H(t, fi(t)) for all t € [o,u}]}
This mapping H is called the Niemytzki operator affiliated with H.

Definition 4.3. Let us assume that H : [0,%)] x B — 6(B) be a set-valued
mapping having nonempty closed as well as bounded values. Then, we
declare ‘H to be of lower semi-continuous nature provided that the Niemytzki
operator corresponding to H is of lower semi-continuous nature and has non-
empty, closed, and decomposable values.

Theorem 4.4. [15]-[31],. Consider h represent a separable space equipped
with a metric @ : h — 0 (El([(),q/';], B)) is a set-valued operator. Suppose
@ provides the ability for continuous selection, means, there is a continuous
operator K : h — 6 (.Cl([(), ), B)) in such a way that k(h) € @(h).

(A10) H :[0,¢] x B— 6(B) is a set-valued mapping in such a way that:

o (t,u) — H(t,h) is L ® B-measurable; .

o i H(t,h) is equipped with lower semi-continuous for t € [0,1].
(A11) To given every q > 0, there is a mapping Rq € £1([0,4],B) in a way

that |H(t, B)|l, < Rq(t) fort € [0,9)] together with h € B and |h| < q.

Theorem 4.5. let us assume that conditions (A2) — (A4), (A6), (A10), to-
gether with (A11) are fulfilled. Then equation (1.1) contains at least one
solution.

Proof. The hypotheses (A10) including with (A11) relative to Lemma (4.6),
H is in a way lower semi continuous. From Theorem (4.5), there is a con-
tinuous mapping f : C([0,%],B) — £([0, 4], B) in a way that f(h) € H(h)
for all h € C([0, w]7 B). Let us suppose the problem:

Obviously, i € ACY([0,4], B) addresses this issue, then 7 is a answer of
equation (1.1). Reformulating this problem as a fixed-point problem through
the mapping @ : C([0, ], B) — C([0,7], B) expressed as

Z1(B)(t) = Pa(t) + [ @ (t, s) () (s)ds

through which the mappings P; and w are expressed by equations (3.13)
and (3.3), respectively. Using conditions (A2) — (A4) and (A6), We can
readily demonstrate that the map @ fulfills all the requirements of the
Leray-Schauder alternative. O

5. TOPOLOGICAL FRAMEWORK

We now establish the topological framework containing the solution set
given by equation (1.1).



686

Brijendra Kumar Chaurasiya and Avadhesh Kumar

Theorem 5.1. Consider Hypothesis (A1) along with upcoming additional
conditions:

(A12) There is a functionp € A (3, BY) in a way that || H(t, )|, < p(t)(Jul+
1) to every t € 3 and u € B.

(A13) A function p1 € A(3,BT) in a way that ||k(t,u)| < p1(t)(Jul + 1) to
everyt € 3 and u € B.

(A14) A function ps € A(3,BT) in a way that ||&(t,u)| < pa(t)(Ju| + 1) to
everyt € y and u € B,

together with

w(w+1) ml — P42
P oo + l1p2lloo + @it Es Pl | <1

is satisfied, then the answer set of equation (1.1) is non-empty and closed
as well as bounded in A(y,B).

Proof. Assume S = {h € A(3,B) : i is a solution of (1.1) }. By Theorem
(3.6), it is well understood that S # 0. Our goal is to demonstrate that S
is compact.

Suppose a sequence (hy),, . C S; for each n, there is v, € Spp, in such
a way that, for any t € 3,

hn(t) = Py, (t +f0 w(t, s)vn(s)ds
meanwhile
w+1 —t P41
Pi(t) = e NG ds+w+2 INACA O

and w@(t, s) is defined by equation (3.3).
By conditions (A12) to (A14), there is a constant ;1 > 0 in such a way that

1l < 01 forevery n>1

As shown in Step 3 of Theorem (3.6), the expression {h, : n > 1} is equi-
continuous in A(y, B). Based on the Arzela-Ascoli Theorem, there is a sub-
sequence {#,,, } that converges to i in A(y, B).
Next, we demonstrate the existence of v(-) € H(-, h(:)) in a way that
A(7) = Py(t) + fo w(t, s)v(s)ds

Due to H(t,-) contains upper semi-continuity, for any € > 0, there is ng(e) >
0 in a way that, for every n > ng,

vn(t) € H (t, Ain(t)) C H(t, (1)) +eB(0,1) foralltey

Because #(+, -) has closed and bounded values, there is a subsequence vy, (+)
in a way that

Un,, (1) = v(-) asm — oo
and
v(t) € H(t,h(t)) foralltey

It results that the subsequence vy, (t) is integrably constrained. By lever-
aging the Lebesgue Dominated Convergence Theorem, we deduce that v is
an element of £1(j, B), thereby confirming that v belongs to Sy ;. Thus,
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h(t) = Pa(t) + [ w(t, s)v(s)ds
Therefore, S is compact in A(y, B). O

6. APPLICATION

Present segment demonstrate the practical applicability of the theoretical
findings for the problem described by equation (1.1). Examine the following
boundary value problem :

(6.1)
CD%h(t) € {—h?’(t) + cos(h(t — k)) + /0 exp(t — s)h(s)ds} ,te0,1]

Associated with boundary conditions:

1
(6.2) ﬁ(O)—ﬁ’(O):/O S+ h(s)))

(6.3) h(1)+h’(1):/0 S0+ [(s)))ds

We define the set:

—h3(t) + cos(h(t — K)) + fot exp(t — s)i(s)ds={veB: fi <v< fo}
where f1, fo : yx B x B x B — B are measurable with respect to t and satisfy
the Lipschitz condition in A. It is assumed that for each t € 3, fi(t,-) is
lower semi-continuous, and fa(t,-) is upper semi-continuous. Furthermore,
suppose:

max (| f1(t, B)], | f2(t, B)]) < E(1+|A]), foralltejand heB
From equation (3.3), the function w is given by:

) 30(0) T3r@e-1) =
(140 (E=s)Tt  (14t)(1—s)0 2
30(6) 3r(6—1)

(=)' (A+t)(t—s)°"!  (1+t)(1-s)°~2 0<s<t
w(t,s) =

where § = %
We take 1) = 1, ¢ (t) = t°, ¢z (t) = t°, and the constants a = Lb=1%c=
Additionally, the functions ¢(h) = 1+ h,¢*(h) = 1 + h, and ¢(h) = 1 + &
for all h € [0,00). Now, let us compute:

fol w(t, s)ds = [y w(t, s)ds + ftl w(t, s)ds

This evaluates to:

=

9 A+01—t)P (14t  (1+t)(1—t)P°!
TG+1) | 30(6+1)  3T@+1) 30(6)
(1+t) (1+t)(1—-1)° @Q4+t)(1—tt)o!
S 3()  BT(6+1) 3(0)

From these calculations, we deduce:

= 3 1
w<F(6+1)+m<5

This implies that when M > 7/2, the condition (3.13) is satisfied. Further-
more, the map H is upper semi-continuous, convex-valued, and compact.
Hence, the BVP (6.1)-(6.3) has at least one solution x on j, as all the re-
quirements of Theorem (3.6) are fulfilled.
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CONCLUSION

The manuscript, successfully executed the Leray-Schauder fixed point
theorem to demonstrate the solution’s existence for boundary value prob-
lems involving non-linear fractional integrodifferential inclusions with dis-
crete delay and integral conditions. The use of this theorem provides a
robust framework for ensuring the solution’s existence for convex as well as
non-convex settings, offering flexibility in addressing complex mathematical
models. The detailed approach presented here enhances our understanding
of how such boundary value problems can be systematically approached, lay-
ing the groundwork for future applications in real-world systems that rely
on memory effects, such as control systems, population dynamics, and en-
gineering processes. This work contributes significantly to the growing field
of fractional differential equations, showcasing their potential in modelling
dynamic systems with cumulative and delayed effects.

Future research could focus on exploring the uniqueness and stability of
these solutions, particularly in non-convex scenarios, as well as developing
efficient numerical methods for practical implementation in real-time appli-
cations. Investigating the extension of these models to multidimensional
systems or incorporating random effects could further enhance their appli-
cability in areas such as climate modelling, economics, and financial fore-
casting, where delayed and cumulative responses are critical. This study not
only provides a theoretical foundation but also opens new avenues for deeper
exploration and practical advancements in various scientific and engineering
disciplines.

FUTURE SCOPE

The existence results for boundary value problems involving non-linear
fractional integro-differential inclusions with delays contains exciting possi-
bilities for control theory. These results can be applied to controllability,
ensuring systems can be driven to desired states under fractional dynamics
and delays. They also provide a foundation for optimal control problems,
helping to find strategies that minimize costs in systems with memory ef-
fects. Future research could explore computational methods to solve these
problems in real-world systems, such as engineering and biology. Drawing
on related studies would help expand these findings to broader applications.
This could lead to more practical and efficient complex dynamic systems
control strategies.
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